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Abstract

We have studied whether the prediction of drug concentrations improves as the number of
samples used for individualization is increased, and whether the Bayesian method of
individualization is superior to the non-linear least-squares method. Data were obtained
from ten adult haematological patients with multidrug resistance who were treated with
cyclosporin. The predictions of blood—cyclosporin concentrations were made using the
Abbott PKS program. The number of samples used for individualization was increased
from 1 to 30 for the Bayesian method and from 4 to 30 for the non-linear least-squares
method. Linear regression, percentage prediction error, and absolute and relative predictive
performance were used to evaluate the predictions.

The results show that the Bayesian method affords greater precision than the non-linear
least-squares method, but that the non-linear least-squares method is more accurate and
results in less bias. Whereas for linear regression predictions improve as the number of
samples is increased, other evaluations show improvement in the range from 5 to 11
samples; linear regression, percentage prediction errors and prediction bias support the
opinion that the Bayesian method progressively becomes the non-linear least-squares
method as the number of samples used for individualization is increased, but the accuracy
and precision of prediction do not support this opinion.

The study supports the statement that Bayes’ law requires parameters from an infinite

population, otherwise the advantage of the Bayesian method might be marginal.

Several sophisticated computer software packages
are currently used for clinical optimization of drug
regimens and prediction of blood—drug concentra-
tions. The pharmacokinetic parameters imple-
mented by most software packages are obtained
either from the literature or from the software
provider’s database. Because the pharmacokinetic
parameters implemented might be well suited for
some populations of patients, but not for a patient
from other populations, individualization is used so
that the pharmacokinetic parameters implemented
suit patients from other populations.

Computer software packages perform individua-
lization by using a pharmacokinetic model to fit a
patient’s blood—drug concentrations and the imple-
mented pharmacokinetic parameters as the initial
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values from which are obtained modified pharma-
cokinetic parameters which are more suitable for
the given patient; it then uses the modified imple-
mented pharmacokinetic parameters to optimize
drugs regimens and predict blood—drug concentra-
tions. Any previous blood—drug concentrations
from a patient can be used for individualization:
blood—drug concentrations from a previous course
of treatment or blood—drug concentrations from the
current course of treatment. Blood-drug con-
centrations from a previous course of treatment
might provide more exact pharmacokinetic esti-
mates because more samples can usually be
obtained from a previous course of treatment; if the
interval between courses of treatment is too long,
however, the patient situation might change, lead-
ing to altered pharmacokinetic parameters. Such a
change might even lead to less exact pharmaco-
kinetic estimates because although fewer blood
samples can be obtained from the current course of
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treatment the patient situation is less likely to
change.

Both Bayesian and non-linear least-squares
methods can be used for individualization on the
basis of the concentrations obtained. During indi-
vidualization several questions might occur: At
which time-point is a sample needed? How many
samples are sufficient? Which of the two methods
is better?

The first two issues are generally considered the
optimum of sampling strategy. The answer to the
first issue has been addressed in some detail
(D’ Argenio 1981; Garcia et al 1994; Rodvold et al
1994; Wu et al 1995¢; Wu 1997). The answer to the
second issue seems simple, i.e. the more samples,
the better the predictions. However, to the best of
our knowledge, no study has been conducted to
examine the second issue in great detail.

The answer to the third issue also seems simple,
i.e. the Bayesian method is superior to the non-
linear least-squares method when the number of
samples is limited and the pharmacokinetic para-
meters from a population are available. This is
because the Bayesian method incorporates into the
pharmacokinetic model not only samples from a
patient but also pharmacokinetic parameters from
the patient population (Abbottbase 1992), whereas
the non-linear least-squares method uses only the
samples from a patient. However, a fundamental
condition has so far been ignored in most Bayesian
method applications, and that is that Bayes’ law
requires parameters from an infinite population
(Mood et al 1988). Clearly, no pharmacokinetic
parameters can be obtained from an infinite popu-
lation of patients and so the Bayesian method might
not work as well as expected.

In our previous studies (Wu et al 1995a, ¢, 1996;
Wu & Furlanut 1996) we have addressed several
issues concerning the prediction of blood—cyclos-
porin concentrations in haematological patients
with multidrug resistance. However, we have not
yet analysed the issue of different numbers of

Table 1.

samples for individualization of predictions
obtained using the Bayesian and non-linear least-
squares methods. In this study we have attempted
to address this issue by predicting blood—cyclo-
sporin concentrations in haematological patients
with multidrug resistance using a popular pharma-
cokinetic software package. In practice we have
used different numbers of blood samples from the
first course of treatment to individualize the imple-
mented pharmacokinetic parameters in the com-
puter software for each patient using the Bayesian
and non-linear least-squares methods, then used the
individualized implemented pharmacokinetic para-
meters with the second-course dosage to predict
the second-course blood concentrations for each
patient. Finally we have compared the measured
and predicted second-course blood concentrations
to make statistical inferences and draw conclusions.

Materials and Methods

Patients, cyclosporin dosage and blood—cyclosporin
concentrations

Ten adult haematological patients with multidrug
resistance (one acute lymphocytic leukaemia, seven
acute non-lymphocytic leukaemia, one chronic
myeloid leukaemia and one non-Hodgkin lym-
phoma) took two courses of treatment (Table 1).
Table 2 gives details of patient liver function. The
patients’ renal functions were stable, i.e. the fluc-
tuation of serum creatinine was smaller than
0-5 g L™ ! from the start of treatment (Rodvold et al
1994). Cyclosporin treatment was conducted by
continuous intravenous infusion for several days
(Table 1), and blood—cyclosporin concentrations
were monitored approximately four times a day
during infusion (0000, 0600, 1200 and 1800 h) and
11 times after infusion (after 0, 0-5, 1, 2, 3, 5, 7, 9,
12, 24 and 36 h). The whole-blood samples were
immediately analysed by a fluorescence polarization
immunoassay method (TDx, Abbott Laboratories,
Diagnostic Division, Irving, TX; Moyer et al (1991)).

Patient demographics and cyclosporin dosage.

Course of treatment

First course Second course

Age (years)

Weight (kg)

Dose (mg kg~ ' day™")
Number of samples

Time of continuous intravenous infusion (days)

44+ 16 44 £16
66+ 11 64+12
11+1 12£2
23+6 26+4
371+ 1-05 374 +£0-95

The data are expressed as means £s.d. (n=10); there were eight male and two
female patients. The time interval between two courses was 7773 days
(means £s.d.). No statistical difference was found between two courses (paired

Student’s t-test).
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Table 2. Patient liver function.

Course of treatment

First course

Second course

SGPT (units L719 21:10+£945 40-30 £ 4644
SGOT (units L™ ) 22-50£10-30 22-10£10-35
7-GT (units L™) 60-70 £ 41-16 62-40 £43.46
Albumin (g L") 3693 £5-68 37124618

SGPT, serum glutamic pyruvic transaminase; SGOT, serum glutamic oxalacetic
transaminase; y-GT, gamma glutamyl transpeptidase. The data are expressed as
means £ s.d. (n=10); there were eight male and two female patients. No statistical
difference was found between the two courses (paired Student’s r-test).

Predictive program and pharmacokinetic
parameters

The PKS program (Abbottbase Pharmacokinetic
System, version 1.10, Abbott Laboratories, IL) was
used to predict the second-course blood-cyclos-
porin concentrations. The Bayesian and non-linear
least-squares methods are operated in the PKS
program by use of a two-compartment model with
volume of distribution in central compartment
(Vd,=0-70+£0-26 L kg~ "), clearance (CL=0-25
+0-08 Lh™' kg™!) and inter-compartment rate
constants (k;», =0-524+0-31 and k»; =0-074 &%
0-018 h™ ). These implemented pharmacokinetic
parameters are based upon 24 adult haematological
patients with multidrug resistance treated with
cyclosporin, and log-normally distributed (Wu et al
1995a, ¢, 1996). The weighting method is the
inverse-squared predicted concentration (Abbott-
base 1992).

Samples for individualization
The first-course blood cyclosporin samples from
each patient were used for individualization: the first
sample was that taken at the first sampling time; the
second sample was that taken at the last sampling
time; the third sample was that taken at the midpoint
between the first and second sampling times; the
fourth sample was that taken at the midpoint
between the first and third sampling times; the fifth
sample was that taken at the midpoint between the
second and third sampling times; and so on.
Because, when using the non-linear least-squares
method (Abbottbase 1992), individualization
requires that the number of samples is greater than
the number of parameters in the model, we used a
minimum of four samples for the non-linear least-
squares method, because there are four parameters
in the two-compartment model, and the beginning
of infusion can be considered as a sample at which
the drug concentration is zero.

Statistics
Data calculation. The measured and predicted
second-course blood—cyclosporin concentrations

were used to calculate percentage prediction errors
from the equation (Wu 1995a; Wu et al 1995a, b, c,
1996; Wu & Furlanut 1996, 1997): percentage
prediction  error = [(predicted  concentration —
measured concentration)/measured concentration|
x 100. Outliers (3 x s.d.) were detected according
to the method of Healy (1979). The absolute and
relative performances were calculated according to
a method described elsewhere (Sheiner & Beal
1981; Wu 1995b). The absolute predictive perfor-
mance includes: mean prediction error as bias;
mean absolute error as accuracy; and mean-squared
prediction error as precision. The relative pre-
dictive performances were differences in bias,
accuracy and precision. Linear regression was used
to calculate the correlation coefficient between
measured and predicted concentrations.

Data presentation. The Shapiro-Wilk’s W-test was
used to determine the distribution of the data. For
normal distribution, the data were presented as
means =+ s.d. For non-normal distribution, the data
were presented as median with interquartile range.

Statistical inference. The paired Student’s r-test,
the Wilcoxon matched-pairs test and Kruskal-
Wallis analysis of variance were used. P <0-05
was considered to be indicative of statistical sig-
nificance. Statistica for Windows (release 4.0 A,
Statsoft 1993) was used to perform all the statistical
tests.

Results

Figure 1 shows the correlation coefficients for
comparison of predicted and measured concentra-
tions in relation to the number of samples from the
first course of treatment used for individualization.
The correlation coefficient increases as the number
of samples from the first course of treatment is
increased. Generally, Bayesian method predictions
are better than those obtained by the non-linear
least-squares method (17 compared with 9), how-
ever no difference is found between the results
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Figure 1. The correlation coefficient (y-axis) for comparison
of predicted second-course concentrations with measured sec-
ond-course concentrations in relation to the number of samples
from the first course of treatment used for individualization
(x-axis). O, Prediction by the Bayesian method; @, prediction
by the non-linear least-squares method. The number of com-

parisons is reported in Figure 2.

from the Bayesian and non-linear least-squares
methods when the number of samples is larger than
20. Also, in most instances differences between the
results from the Bayesian and non-linear least-
squares methods are not large enough to be sig-
nificant.

Figure 2 shows the dependence of percentage
prediction errors on the number of samples used for
individualization. The predictions are better when
the number of samples is in the range 10 to 16,
because the prediction medians are closer to 0%
prediction error. Among all the comparisons, three
Bayesian methods are better than their corre-
sponding non-linear least-squares methods, and six
non-linear least-squares methods are better than
their corresponding Bayesian methods.

Figure 3 shows the bias of predictions in relation
to the number of samples used for individualiza-
tion. The predictions are less biased when the
number of samples is in the range 10 to 16. Among
all the comparisons, five Bayesian methods have
smaller bias than their corresponding non-linear
least-squares methods, and six non-linear least-
squares methods have smaller bias than their cor-
responding Bayesian methods.

Figure 4 shows the accuracy of predictions in
relation to the number of samples used for indivi-
dualization. The Bayesian method predictions are
most accurate when the number of samples is four.
Among all the comparisons, twelve non-linear
least-squares methods are more accurate than their
corresponding Bayesian methods, and five Baye-
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Figure 2. The percentage prediction errors (x-axis) for the
Bayesian (O) and the non-linear least-squares (@) methods in
relation to the number of samples from the first course used for
individualization (y-axis). The data are expressed as median
with interquartile range. The larger the interquartile range, the
worse the predictions. When a percentage prediction error is
larger than 0%, over-prediction occurs, that is, a predicted
concentration is higher than its corresponding measured con-
centration. When a percentage prediction error is smaller than
0%, under-prediction exists, i.e. a predicted concentration is
lower than its corresponding measured concentration. N is the
number of patients and n the number of percentage prediction
errors. *P <005, **P <0-01 and ***P < 0-001, the predic-
tions of the non-linear least-squares method are significantly
better than those of the Bayesian method. TP <0.05,
TP <0-01 and T11P < 0-001, the predictions of the Bayesian
method are significantly better than those of the non-linear
least-squares (Wilcoxon matched-pairs test). Taken together,
the figure can be read, for example, five first-course samples
(y-axis labels) from each of 10 patients (N = 10) were used for
individualization in each of these 10 patients; 257 measured
and predicted second-course concentrations (n=257) were
obtained from these 10 patients using the Bayesian and non-
linear least-squares methods, respectively; 257 percentage
prediction errors were calculated for Bayesian and non-linear
least-squares methods, respectively; the medians of 257 per-
centage prediction errors were —8-84% and —10-20% for
Bayesian and non-linear least-squares methods, respectively;
the interquartile ranges were from — 19-43% to 4-83% for the
Bayesian method and from —21-34% to 4-10% for the non-
linear least-squares method; the Bayesian method predictions
are better than those of the non-linear least-squares method at
the P <0-001 significance level (111). The Kruskal-Wallis
analysis of variance was used to test whether the medians of
percentage prediction errors are equal when the individualiza-
tion from 1 to 30 first-course samples (y-axis labels) for
Bayesian and from 5 to 30 first-course samples for non-linear
least-squares methods.

sian methods are more accurate than their corre-
sponding non-linear least-squares methods.

Figure 5 shows the precision of predictions in
relation to the number of samples used for indivi-
dualization. Bayesian method predictions are most
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Figure 3. Bias of predictions obtained by use of the Bayesian

(O) and non-linear least-squares (@) methods (x-axis) in
relation to the number of samples from the first course of
treatment used for individualization (y-axis). For details, see
the caption to Figure 2.

precise when the number of samples is four.
Among all the comparisons, fourteen Bayesian
methods are more precise than their corresponding
non-linear least-squares methods, and four non-
linear least-squares methods are more precise than
their corresponding Bayesian methods.

We also used Kruskal-Wallis analysis of var-
iance to test whether the medians of percentage
prediction errors, bias, accuracy and precision were
equal among all predictions using different num-
bers of samples for individualization. The results
show that they are not equal at the P < 0-001 level.
This means that the number of samples from the
first course of treatment for individualization
indeed affects the predictions of the Bayesian and
non-linear least-squares methods.

Discussion

We have used a data-rich sample schedule to ana-
lyse the effect of the number of samples used
for individualization and the difference between
Bayesian and non-linear least-squares methods,
although such a data-rich sample schedule is not
feasible for clinical settings.

This data-rich study was conducted for two rea-
sons. Until now, too few samples have been used in
most studies comparing the effect of the number of
samples on the method of individualization used.
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Figure 4. The prediction accuracy obtained by use of the
Bayesian (O) and non-linear least-squares (@) methods
(x-axis) in relation to the number of samples from the first
course of treatment used for individualization (y-axis). For
details, see the caption to Figure 2.
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One can obtain some indication from these studies,
but not a systematic understanding. The second
reason is that the Bayesian method is widely
regarded as being overwhelmingly superior to the
non-linear least-squares method, but the funda-
mental condition for the Bayesian method is
ignored, as indicated above. On the basis of these
viewpoints, our study is a technique-oriented study
rather than a clinical-oriented study.

Although the results of this study show the ten-
dency, i.e. the more the samples, the better the
prediction, this tendency is not very clear, because
the results of linear regression show such a ten-
dency in the range 1 to 30 samples whereas other
evaluations demonstrated such a tendency only in
the range 5 to 11 samples.

The results of this study did not show the Baye-
sian method to be overwhelmingly superior to the
non-linear least-squares method, indeed several
statistical evaluations indicate that the non-linear
least-squares method is better. This might support
the statement that the Bayes’ law requires the use
of parameters from an infinite population (Mood et
al 1988), otherwise, the advantage of the Bayesian
method might be marginal.

Current opinion is that the Bayesian method
progressively becomes the non-linear least-squares
method as the number of samples used for indivi-
dualization increases (Kelman et al 1982; Jelliffe et
al 1991). So far no publication has documented
when this change occurs. The linear regression,
percentage prediction error and prediction bias
results supported this opinion, but prediction
accuracy and precision results did not.

In this study the number of patients was not large;
because statistical power analysis showed that the
number of patients was sufficient to find the dif-
ference, we did not include more patients.

Until recently, numerous optimum sampling
strategies have been developed in various situations
(e.g. D’Argenio 1981; Wu 1997); it is, however,
difficult to follow each of them to schedule our
sample selection. One significant factor is that most
optimum sampling strategies are concerned with
using as few samples as possible. However,
because we have so many samples from each
patient, we hope to use a somewhat random sam-
ples schedule.

The results also show that predictions were dra-
matically improved as the number of samples was
increased from one to two. This should encourage
the taking of more than one sample for individua-
lization and prediction.

In conclusion, the results show that the Bayesian
method affords greater precision than the non-
linear least-squares method, but use of the non-

linear least-squares method results in less bias and
greater accuracy. Although linear regression
shows that predictions improve as the number of
samples is increased, other evaluations show
improvement in the range 5 to 11 samples only.
The linear regression, percentage prediction error
and prediction bias results supported the opinion
that the Bayesian method progressively becomes
the non-linear least-squares method as an
increasing number of samples is used for indivi-
dualization, but prediction accuracy and precision
did not support this opinion.
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